A 25-kD inhibitor of actin polymerization is a low molecular mass heat shock protein
نویسندگان
چکیده
The 25-kD inhibitor of actin polymerization (25-kD IAP), isolated from turkey smooth muscle (Miron, T., M. Wilchek, and B. Geiger, 1988. Eur. J. Biochem. 178:543-553), is shown here to be a low molecular mass heat shock protein (HSP). Direct sequence analysis of the purified protein, as well as cloning and sequencing of the respective cDNA, disclosed a high degree of homology (67% identity, 80% similarity) to the human 27-kD HSP. Southern blot of chicken genomic DNA disclosed one band, suggesting the presence of a single gene, and Northern blot analysis revealed abundant transcript of approximately 1 kb in gizzard and heart tissues and lower amounts in total 18-d chick embryo RNA and in cultured fibroblasts. Exposure of the latter cells to 45 degrees C resulted in over 15-fold increase in the apparent level of the 25-kD IAP protein, confirming that its expression is regulated by heat shock. Immunofluorescent microscopic localization indicated that after heat treatment, the levels of the 25-kD IAP were markedly increased and the protein was apparently associated with cytoplasmic granules. Heat shock also had a transient, yet prominent, effect on the microfilament system in cultured fibroblasts: stress fibers disintegrated within 10-15 min after incubation at 45 degrees C, yet upon further incubation at the elevated temperature, conspicuous actin bundles were apparently reformed.
منابع مشابه
SAPK2/p38-dependent F-Actin Reorganization Regulates Early Membrane Blebbing during Stress-induced Apoptosis
In endothelial cells, H2O2 induces the rapid formation of focal adhesion complexes at the ventral face of the cells and a major reorganization of the actin cytoskeleton into dense transcytoplasmic stress fibers. This change in actin dynamics results from the activation of the mitogen-activated protein (MAP) kinase stress-activated protein kinase-2/p38 (SAPK2/p38), which, via MAP kinase-activate...
متن کاملCritical role for heat shock protein 20 (HSP20) in migration of malarial sporozoites.
Plasmodium sporozoites, single cell eukaryotic pathogens, use their own actin/myosin-based motor machinery for life cycle progression, which includes forward locomotion, penetration of cellular barriers, and invasion of target cells. To display fast gliding motility, the parasite uses a high turnover of actin polymerization and adhesion sites. Paradoxically, only a few classic actin regulatory ...
متن کاملLow-density lipoproteins induce heat shock protein 27 dephosphorylation, oligomerization, and subcellular relocalization in human vascular smooth muscle cells.
OBJECTIVE High levels of circulating low-density lipoproteins (LDL) are a major atherosclerotic risk factor. The effects of intimal LDL on vascular smooth muscle cell (VSMC) phenotype and function during plaque remodeling and vascular repair are not fully understood. We have investigated whether exposure of VSMC to LDL induces changes on the proteomic profile of the heat shock protein (HSP) fam...
متن کاملAltered hsp27 Expression in Nephrotic Syndrome
Although nephrotic syndrome is a very common kidney disease, little is known about the molecular changes occurring within glomerular capillary loops during development of disease. The characteristic histologic change is retraction (effacement) of the distal “foot” processes of glomerular epithelial cells (GEC) which surround the capillary loops. The GEC foot processes are an essential part of t...
متن کاملCharacterization and Physiological Function of Class I Low-Molecular-Mass, Heat-Shock Protein Complex in Soybean.
Examination of an ammonium sulfate-enriched fraction (70-100% saturation) of heat-shock proteins (HSPs) by nondenaturing polyacrylamide gel electrophoresis revealed the presence of a high molecular mass complex (280 kD) in soybean (Glycine max) seedlings. This complex cross-reacted with antibodies raised against soybean class I low-molecular-mass (LMW) HSPs. Dissociation of the complex by denat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 114 شماره
صفحات -
تاریخ انتشار 1991